Efficient Splitting-based Method for Global Image Smoothing

04/26/2016
by   Youngjung Kim, et al.
0

Edge-preserving smoothing (EPS) can be formulated as minimizing an objective function that consists of data and prior terms. This global EPS approach shows better smoothing performance than a local one that typically has a form of weighted averaging, at the price of high computational cost. In this paper, we introduce a highly efficient splitting-based method for global EPS that minimizes the objective function of l_2 data and prior terms (possibly non-smooth and non-convex) in linear time. Different from previous splitting-based methods that require solving a large linear system, our approach solves an equivalent constrained optimization problem, resulting in a sequence of 1D sub-problems. This enables linear time solvers for weighted-least squares and -total variation problems. Our solver converges quickly, and its runtime is even comparable to state-of-the-art local EPS approaches. We also propose a family of fast iteratively re-weighted algorithms using a non-convex prior term. Experimental results demonstrate the effectiveness and flexibility of our approach in a range of computer vision and image processing tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro