Electronic properties of binary compounds with high fidelity and high throughput
We present example applications of an approach to high-throughput first-principles calculations of the electronic properties of materials implemented within the Exabyte.io platform. We deploy computational techniques based on the Density Functional Theory with both Generalized Gradient Approximation (GGA) and Hybrid Screened Exchange (HSE) in order to extract the electronic band gaps and band structures for a set of 775 binary compounds. We find that for HSE, the average relative error fits within 22 it is 49 centrally available from a public cloud provider to fit within 1.2 and 36 hours for GGA and HSE, respectively. The results and the associated data, including the materials and simulation workflows, are standardized and made available online in an accessible, repeatable and extensible setting.
READ FULL TEXT