Energy-aware Allocation of Graph Jobs in Vehicular Cloud Computing-enabled Software-defined IoV
Software-defined internet of vehicles (SDIoV) has emerged as a promising paradigm to realize flexible and comprehensive resource management, for next generation automobile transportation systems. In this paper, a vehicular cloud computing-based SDIoV framework is studied wherein the joint allocation of transmission power and graph job is formulated as a nonlinear integer programming problem. To effectively address the problem, a structure-preservation-based two-stage allocation scheme is proposed that decouples template searching from power allocation. Specifically, a hierarchical tree-based random subgraph isomorphism mechanism is applied in the first stage by identifying potential mappings (templates) between the components of graph jobs and service providers. A structure-preserving simulated annealing-based power allocation algorithm is adopted in the second stage to achieve the trade-off between the job completion time and energy consumption. Extensive simulations are conducted to verify the performance of the proposed algorithms.
READ FULL TEXT