Energy Harvesting Communications Using Dual Alternating Batteries
We consider an energy harvesting transmitter equipped with two batteries having finite storage capacities, communicating over an additive white Gaussian channel. The work is motivated by an observation that many practical batteries, when repeatedly charged after being partially discharged, suffer from degradation in the usable capacity. The capacity can be recovered by completely discharging the battery before charging it fully again. Hence, in this work, we impose the constraint that a battery must be charged (discharged) only after it is fully discharged (charged). Our goal is to maximize the longterm average throughput with non-causal and causal knowledge of the energy arrivals, which we assume to be Bernoulli. We propose two sub-optimal policies and obtain an upper bound on the performance gap (G) from the optimal long-term average throughput that is achieved with infinite capacity batteries. We find that G remains constant as the amount of energy harvested per arrival increases. Numerically, we also find that G decreases with the battery capacity faster than the inverse of the square root of the battery capacity for a specific energy arrival parameters.
READ FULL TEXT