Enhancing Industrial X-ray Tomography by Data-Centric Statistical Methods

03/08/2020
by   Jarkko Suuronen, et al.
0

X-ray tomography has applications in various industrial fields such as sawmill industry, oil and gas industry, chemical engineering, and geotechnical engineering. In this article, we study Bayesian methods for the X-ray tomography reconstruction. In Bayesian methods, the inverse problem of tomographic reconstruction is solved with help of a statistical prior distribution which encodes the possible internal structures by assigning probabilities for smoothness and edge distribution of the object. We compare Gaussian random field priors, that favour smoothness, to non-Gaussian total variation, Besov, and Cauchy priors which promote sharp edges and high-contrast and low-contrast areas in the object. We also present computational schemes for solving the resulting high-dimensional Bayesian inverse problem with 100,000-1,000,000 unknowns. In particular, we study the applicability of a no-U-turn variant of Hamiltonian Monte Carlo methods and of a more classical adaptive Metropolis-within-Gibbs algorithm for this purpose. These methods also enable full uncertainty quantification of the reconstructions. For faster computations, we use maximum a posteriori estimates with limited-memory BFGS optimisation algorithm. As the first industrial application, we consider sawmill industry X-ray log tomography. The logs have knots, rotten parts, and even possibly metallic pieces, making them good examples for non-Gaussian priors. Secondly, we study drill-core rock sample tomography, an example from oil and gas industry. We show that Cauchy priors produce smaller number of artefacts than other choices, especially with sparse high-noise measurements, and choosing Hamiltonian Monte Carlo enables systematic uncertainty quantification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset