Enhancing Quantum Support Vector Machines through Variational Kernel Training
Quantum machine learning (QML) has witnessed immense progress recently, with quantum support vector machines (QSVMs) emerging as a promising model. This paper focuses on the two existing QSVM methods: quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM). While both have yielded impressive results, we present a novel approach that synergizes the strengths of QK-SVM and QV-SVM to enhance accuracy. Our proposed model, quantum variational kernel SVM (QVK-SVM), leverages the quantum kernel and quantum variational algorithm. We conducted extensive experiments on the Iris dataset and observed that QVK-SVM outperforms both existing models in terms of accuracy, loss, and confusion matrix indicators. Our results demonstrate that QVK-SVM holds tremendous potential as a reliable and transformative tool for QML applications. Hence, we recommend its adoption in future QML research endeavors.
READ FULL TEXT