Ethically Aligned Opportunistic Scheduling for Productive Laziness
In artificial intelligence (AI) mediated workforce management systems (e.g., crowdsourcing), long-term success depends on workers accomplishing tasks productively and resting well. This dual objective can be summarized by the concept of productive laziness. Existing scheduling approaches mostly focus on efficiency but overlook worker wellbeing through proper rest. In order to enable workforce management systems to follow the IEEE Ethically Aligned Design guidelines to prioritize worker wellbeing, we propose a distributed Computational Productive Laziness (CPL) approach in this paper. It intelligently recommends personalized work-rest schedules based on local data concerning a worker's capabilities and situational factors to incorporate opportunistic resting and achieve superlinear collective productivity without the need for explicit coordination messages. Extensive experiments based on a real-world dataset of over 5,000 workers demonstrate that CPL enables workers to spend 70 more ethically aligned scheduling than existing approaches.
READ FULL TEXT