Evidential Temporal-aware Graph-based Social Event Detection via Dempster-Shafer Theory
The rising popularity of online social network services has attracted lots of research on mining social media data, especially on mining social events. Social event detection, due to its wide applications, has now become a trivial task. State-of-the-art approaches exploiting Graph Neural Networks (GNNs) usually follow a two-step strategy: 1) constructing text graphs based on various views (co-user, co-entities and co-hashtags); and 2) learning a unified text representation by a specific GNN model. Generally, the results heavily rely on the quality of the constructed graphs and the specific message passing scheme. However, existing methods have deficiencies in both aspects: 1) They fail to recognize the noisy information induced by unreliable views. 2) Temporal information which works as a vital indicator of events is neglected in most works. To this end, we propose ETGNN, a novel Evidential Temporal-aware Graph Neural Network. Specifically, we construct view-specific graphs whose nodes are the texts and edges are determined by several types of shared elements respectively. To incorporate temporal information into the message passing scheme, we introduce a novel temporal-aware aggregator which assigns weights to neighbours according to an adaptive time exponential decay formula. Considering the view-specific uncertainty, the representations of all views are converted into mass functions through evidential deep learning (EDL) neural networks, and further combined via Dempster-Shafer theory (DST) to make the final detection. Experimental results on three real-world datasets demonstrate the effectiveness of ETGNN in accuracy, reliability and robustness in social event detection.
READ FULL TEXT