Existence and hardness of conveyor belts

08/21/2019
by   Molly Baird, et al.
0

An open problem of Manuel Abellanas asks whether every set of disjoint closed unit disks in the plane can be connected by a conveyor belt, which means a tight simple closed curve that touches the boundary of each disk, possibly multiple times. We prove three main results. First, for unit disks whose centers are both x-monotone and y-monotone, or whose centers have x-coordinates that differ by at least two units, a conveyor belt always exists and can be found efficiently. Second, it is NP-complete to determine whether disks of varying radii have a conveyor belt, and it remains NP-complete when we constrain the belt to touch disks exactly once. Third, any disjoint set of n disks of arbitrary radii can be augmented by O(n) "guide" disks so that the augmented system has a conveyor belt touching each disk exactly once, answering a conjecture of Demaine, Demaine, and Palop.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro