FAN: Feature Adaptation Network for Surveillance Face Recognition and Normalization

11/26/2019
by   Xi Yin, et al.
8

This paper studies face recognition (FR) and normalization in surveillance imagery. Surveillance FR is a challenging problem that has great values in law enforcement. Despite recent progress in conventional FR, less effort has been devoted to surveillance FR. To bridge this gap, we propose a Feature Adaptation Network (FAN) to jointly perform surveillance FR and normalization. Our face normalization mainly acts on the aspect of image resolution, closely related to face super-resolution. However, previous face super-resolution methods require paired training data with pixel-to-pixel correspondence, which is typically unavailable between real low- and high-resolution faces. Our FAN can leverage both paired and unpaired data as we disentangle the features into identity and non-identity components and adapt the distribution of the identity features, which breaks the limit of current face super-resolution methods. We further propose a random scale augmentation scheme to learn resolution robust identity features, with advantages over previous fixed scale augmentation. Extensive experiments on LFW, WIDER FACE, QUML-SurvFace and SCface datasets have demonstrated the superiority of our proposed method compared to the state of the arts on surveillance face recognition and normalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset