Feature Fusion from Head to Tail: an Extreme Augmenting Strategy for Long-Tailed Visual Recognition

06/12/2023
by   Mengke LI, et al.
0

The imbalanced distribution of long-tailed data poses a challenge for deep neural networks, as models tend to prioritize correctly classifying head classes over others so that perform poorly on tail classes. The lack of semantics for tail classes is one of the key factors contributing to their low recognition accuracy. To rectify this issue, we propose to augment tail classes by borrowing the diverse semantic information from head classes, referred to as head-to-tail fusion (H2T). We randomly replace a portion of the feature maps of the tail class with those of the head class. The fused feature map can effectively enhance the diversity of tail classes by incorporating features from head classes that are relevant to them. The proposed method is easy to implement due to its additive fusion module, making it highly compatible with existing long-tail recognition methods for further performance boosting. Extensive experiments on various long-tailed benchmarks demonstrate the effectiveness of the proposed H2T. The source code is temporarily available at https://github.com/Keke921/H2T.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset