Finite-sample Guarantees for Nash Q-learning with Linear Function Approximation

03/01/2023
by   Pedro Cisneros-Velarde, et al.
0

Nash Q-learning may be considered one of the first and most known algorithms in multi-agent reinforcement learning (MARL) for learning policies that constitute a Nash equilibrium of an underlying general-sum Markov game. Its original proof provided asymptotic guarantees and was for the tabular case. Recently, finite-sample guarantees have been provided using more modern RL techniques for the tabular case. Our work analyzes Nash Q-learning using linear function approximation – a representation regime introduced when the state space is large or continuous – and provides finite-sample guarantees that indicate its sample efficiency. We find that the obtained performance nearly matches an existing efficient result for single-agent RL under the same representation and has a polynomial gap when compared to the best-known result for the tabular case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro