Generate, Transform, Answer: Question Specific Tool Synthesis for Tabular Data

03/17/2023
by   Carlos Gemmell, et al.
0

Tabular question answering (TQA) presents a challenging setting for neural systems by requiring joint reasoning of natural language with large amounts of semi-structured data. Unlike humans who use programmatic tools like filters to transform data before processing, language models in TQA process tables directly, resulting in information loss as table size increases. In this paper we propose ToolWriter to generate query specific programs and detect when to apply them to transform tables and align them with the TQA model's capabilities. Focusing ToolWriter to generate row-filtering tools improves the state-of-the-art for WikiTableQuestions and WikiSQL with the most performance gained on long tables. By investigating headroom, our work highlights the broader potential for programmatic tools combined with neural components to manipulate large amounts of structured data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset