Globally Optimal Joint Search of Topology and Trajectory for Planar Linkages

05/22/2019
by   Zherong Pan, et al.
0

We present a method to find globally optimal topology and trajectory jointly for planar linkages. Planar linkage structures can generate complex end-effector trajectories using only a single rotational actuator, which is very useful in building low-cost robots. We address the problem of searching for the optimal topology and geometry of these structures. However, since topology changes are non-smooth and non-differentiable, conventional gradient-based searches cannot be used. We formulate this problem as a mixed-integer convex programming (MICP) problem, for which a global optimum can be found using the branch-and-bound (BB) algorithm. Compared to existing methods, our experiments show that the proposed approach finds complex linkage structures more efficiently and generates end-effector trajectories more accurately.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro