Group-Buying Recommendation for Social E-Commerce

10/14/2020
by   Jun Zhang, et al.
0

Group buying, as an emerging form of purchase in social e-commerce websites, such as Pinduoduo, has recently achieved great success. In this new business model, users, initiator, can launch a group and share products to their social networks, and when there are enough friends, participants, join it, the deal is clinched. Group-buying recommendation for social e-commerce, which recommends an item list when users want to launch a group, plays an important role in the group success ratio and sales. However, designing a personalized recommendation model for group buying is an entirely new problem that is seldom explored. In this work, we take the first step to approach the problem of group-buying recommendation for social e-commerce and develop a GBGCN method (short for Group-Buying Graph Convolutional Network). Considering there are multiple types of behaviors (launch and join) and structured social network data, we first propose to construct directed heterogeneous graphs to represent behavioral data and social networks. We then develop a graph convolutional network model with multi-view embedding propagation, which can extract the complicated high-order graph structure to learn the embeddings. Last, since a failed group-buying implies rich preferences of the initiator and participants, we design a double-pairwise loss function to distill such preference signals. We collect a real-world dataset of group-buying and conduct experiments to evaluate the performance. Empirical results demonstrate that our proposed GBGCN can significantly outperform baseline methods by 2.69 dataset are released at https://github.com/Sweetnow/group-buying-recommendation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset