High-Quality Face Image SR Using Conditional Generative Adversarial Networks

07/04/2017
by   Huang Bin, et al.
0

We propose a novel single face image super-resolution method, which named Face Conditional Generative Adversarial Network(FCGAN), based on boundary equilibrium generative adversarial networks. Without taking any facial prior information, our method can generate a high-resolution face image from a low-resolution one. Compared with existing studies, both our training and testing phases are end-to-end pipeline with little pre/post-processing. To enhance the convergence speed and strengthen feature propagation, skip-layer connection is further employed in the generative and discriminative networks. Extensive experiments demonstrate that our model achieves competitive performance compared with state-of-the-art models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro