HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips

DRAM is the building block of modern main memory systems. DRAM cells must be periodically refreshed to prevent data loss. Refresh operations degrade system performance by interfering with memory accesses. As DRAM chip density increases with technology node scaling, refresh operations also increase because: 1) the number of DRAM rows in a chip increases; and 2) DRAM cells need additional refresh operations to mitigate bit failures caused by RowHammer, a failure mechanism that becomes worse with technology node scaling. Thus, it is critical to enable refresh operations at low performance overhead. To this end, we propose a new operation, Hidden Row Activation (HiRA), and the HiRA Memory Controller (HiRA-MC). HiRA hides a refresh operation's latency by refreshing a row concurrently with accessing or refreshing another row within the same bank. Unlike prior works, HiRA achieves this parallelism without any modifications to off-the-shelf DRAM chips. To do so, it leverages the new observation that two rows in the same bank can be activated without data loss if the rows are connected to different charge restoration circuitry. We experimentally demonstrate on 56 parallelize a DRAM row's refresh operation with refresh or activation of any of the 32 latency of two refresh operations by 51.4 HiRA-MC modifies the memory request scheduler to perform HiRA when a refresh operation can be performed concurrently with a memory access or another refresh. Our system-level evaluations show that HiRA-MC increases system performance by 12.6 periodic refreshes and refreshes for RowHammer protection (preventive refreshes), respectively, for future DRAM chips with increased density and RowHammer vulnerability.


page 4

page 5

page 8


Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices

RowHammer is a circuit-level DRAM vulnerability, where repeatedly activa...

Mithril: Cooperative Row Hammer Protection on Commodity DRAM Leveraging Managed Refresh

Since its public introduction in the mid-2010s, the Row Hammer (RH) phen...

RowPress: Amplifying Read Disturbance in Modern DRAM Chips

Memory isolation is critical for system reliability, security, and safet...

High-Performance and Energy-Effcient Memory Scheduler Design for Heterogeneous Systems

When multiple processor cores (CPUs) and a GPU integrated together on th...

HashMem: PIM-based Hashmap Accelerator

Hashmaps are widely utilized data structures in many applications to per...

Mitigating Wordline Crosstalk using Adaptive Trees of Counters

High access frequency of certain rows in the DRAM may cause data loss in...

Accelerating Bulk Bit-Wise X(N)OR Operation in Processing-in-DRAM Platform

With Von-Neumann computing architectures struggling to address computati...

Please sign up or login with your details

Forgot password? Click here to reset