Impact of Channel Aging on Dual-Function Radar-Communication Systems: Performance Analysis and Resource Allocation

03/01/2023
by   Jie Chen, et al.
0

In conventional dual-function radar-communication (DFRC) systems, the radar and communication channels are routinely estimated at fixed time intervals based on their worst-case operation scenarios. Such situation-agnostic repeated estimations cause significant training overhead and dramatically degrade the system performance, especially for applications with dynamic sensing/communication demands and limited radio resources. In this paper, we leverage the channel aging characteristics to reduce training overhead and to design a situation-dependent channel re-estimation interval optimization-based resource allocation for performance improvement in a multi-target tracking DFRC system. Specifically, we exploit the channel temporal correlation to predict radar and communication channels for reducing the need of training preamble retransmission. Then, we characterize the channel aging effects on the Cramer-Rao lower bounds (CRLBs) for radar tracking performance analysis and achievable rates with maximum ratio transmission (MRT) and zero-forcing (ZF) transmit beamforming for communication performance analysis. In particular, the aged CRLBs and achievable rates are derived as closed-form expressions with respect to the channel aging time, bandwidth, and power. Based on the analyzed results, we optimize these factors to maximize the average total aged achievable rate subject to individual target tracking precision demand, communication rate requirement, and other practical constraints. Since the formulated problem belongs to a non-convex problem, we develop an efficient one-dimensional search based optimization algorithm to obtain its suboptimal solutions. Finally, simulation results are presented to validate the correctness of the derived theoretical results and the effectiveness of the proposed allocation scheme.

READ FULL TEXT

page 1

page 3

page 12

research
02/08/2022

Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks: A Deep Learning Approach

The implementation of integrated sensing and communication (ISAC) highly...
research
05/04/2023

Fundamental Detection Probability vs. Achievable Rate Tradeoff in Integrated Sensing and Communication Systems

Integrating sensing functionalities is envisioned as a distinguishing fe...
research
02/10/2023

Information-Theoretical Approach to Integrated Pulse-Doppler Radar and Communication Systems

Integrated sensing and communication improves the design of systems by c...
research
04/09/2022

Fundamental Limits on Detection With a Dual-function Radar Communication System

This paper investigates the fundamental limits on the target detection p...
research
07/29/2021

Heterogeneously-Distributed Joint Radar Communications: Bayesian Resource Allocation

Due to spectrum scarcity, the coexistence of radar and wireless communic...
research
02/22/2019

Optimal Channel Estimation for Hybrid Energy Beamforming under Phase Shifter Impairments

Smart multiantenna wireless power transmission can enable perpetual oper...
research
11/08/2021

Access Management in Joint Sensing and Communication Systems: Efficiency versus Fairness

In this paper, we consider a distributed joint sensing and communication...

Please sign up or login with your details

Forgot password? Click here to reset