Improving Aspect Term Extraction with Bidirectional Dependency Tree Representation

05/21/2018
by   Huaishao Luo, et al.
0

Aspect term extraction is one of the important subtasks in aspect-based sentiment analysis. Previous studies have shown that dependency tree structure representation is promising for this task. In this paper, we propose a novel bidirectional dependency tree network to extract dependency structure features from the given sentences. The key idea is to explicitly incorporate both representations gained separately from the bottom-up and top-down propagation on the given dependency syntactic tree. An end-to-end framework is proposed to integrate the embedded representations and BiLSTM plus CRF to learn both tree-structured and sequential features to solve the aspect term extraction problem. Experimental results demonstrate that the proposed model outperforms state-of-the-art baseline models on four benchmark SemEval datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro