Improving Coordination in Multi-Agent Deep Reinforcement Learning through Memory-driven Communication

01/12/2019
by   Emanuele Pesce, et al.
12

Deep reinforcement learning algorithms have recently been used to train multiple interacting agents in a centralised manner whilst keeping their execution decentralised. When the agents can only acquire partial observations and are faced with a task requiring coordination and synchronisation skills, inter-agent communication plays an essential role. In this work, we propose a framework for multi-agent training using deep deterministic policy gradients that enables the concurrent, end-to-end learning of an explicit communication protocol through a memory device. During training, the agents learn to perform read and write operations enabling them to infer a shared representation of the world. We empirically demonstrate that concurrent learning of the communication device and individual policies can improve inter-agent coordination and performance, and illustrate how different communication patterns can emerge for different tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset