Improving the particle filter for high-dimensional problems using artificial process noise

01/22/2018
by   Anna Wigren, et al.
0

The particle filter is one of the most successful methods for state inference and identification of general non-linear and non-Gaussian models. However, standard particle filters suffer from degeneracy of the particle weights for high-dimensional problems. We propose a method for improving the performance of the particle filter for certain challenging state space models, with implications for high-dimensional inference. First we approximate the model by adding artificial process noise in an additional state update, then we design a proposal that combines the standard and the locally optimal proposal. This results in a bias-variance trade-off, where adding more noise reduces the variance of the estimate but increases the model bias. The performance of the proposed method is evaluated on a linear Gaussian state space model and on the non-linear Lorenz'96 model. For both models we observe a significant improvement in performance over the standard particle filter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro