Industry Practice of Coverage-Guided Enterprise-Level DBMS Fuzzing

03/01/2021
by   Mingzhe Wang, et al.
0

As an infrastructure for data persistence and analysis, Database Management Systems (DBMSs) are the cornerstones of modern enterprise software. To improve their correctness, the industry has been applying blackbox fuzzing for decades. Recently, the research community achieved impressive fuzzing gains using coverage guidance. However, due to the complexity and distributed nature of enterprise-level DBMSs, seldom are these researches applied to the industry. In this paper, we apply coverage-guided fuzzing to enterprise-level DBMSs from Huawei and Bloomberg LP. In our practice of testing GaussDB and Comdb2, we found major challenges in all three testing stages. The challenges are collecting precise coverage, optimizing fuzzing performance, and analyzing root causes. In search of a general method to overcome these challenges, we propose Ratel, a coverage-guided fuzzer for enterprise-level DBMSs. With its industry-oriented design, Ratel improves the feedback precision, enhances the robustness of input generation, and performs an on-line investigation on the root cause of bugs. As a result, Ratel outperformed other fuzzers in terms of coverage and bugs. Compared to industrial black box fuzzers SQLsmith and SQLancer, as well as coverage-guided academic fuzzer Squirrel, Ratel covered 38.38 fuzzers in GaussDB, PostgreSQL, and Comdb2, respectively. More importantly, Ratel has discovered 32, 42, and 5 unknown bugs in GaussDB, Comdb2, and PostgreSQL.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset