Information theoretic limits of state-dependent networks
We investigate the information theoretic limits of two types of state-dependent models in this dissertation. These models capture a wide range of wireless communication scenarios where there are interference cognition among transmitters. Hence, information theoretic studies of these models provide useful guidelines for designing new interference cancellation schemes in practical wireless networks. In particular, we first study the two-user state-dependent Gaussian multiple access channel (MAC) with a helper. Inner and outer bounds on the capacity region are first derived, which improve the state-of-the-art bounds given in the literature. Further comparison of these bounds yields either segments on the capacity region boundary or the full capacity region by considering various regimes of channel parameters. We then study the two-user Gaussian state-dependent Z-IC and state-dependent IC. Three interference regimes are studied, and the capacity region or the sum capacity boundary is characterized either fully or partially under various channel parameters. The impact of the correlation between the states on the cancellation of state and interference as well as the achievability of the capacity is demonstrated via numerical analysis. Numerical investigation indicates that for the regular IC, the correlation between states impacts the achievability of the channel capacity in a different way from that of the Z-IC.
READ FULL TEXT