Intrinsic Universal Measurements of Non-linear Embeddings

11/05/2018
by   Ke Sun, et al.
0

A basic problem in machine learning is to find a mapping f from a low dimensional latent space to a high dimensional observation space. Equipped with the representation power of non-linearity, a learner can easily find a mapping which perfectly fits all the observations. However such a mapping is often not considered as good as it is not simple enough and over-fits. How to define simplicity? This paper tries to make such a formal definition of the amount of information imposed by a non-linear mapping. This definition is based on information geometry and is independent of observations, nor specific parametrizations. We prove these basic properties and discuss relationships with parametric and non-parametric embeddings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro