Introducing Shape Prior Module in Diffusion Model for Medical Image Segmentation
Medical image segmentation is critical for diagnosing and treating spinal disorders. However, the presence of high noise, ambiguity, and uncertainty makes this task highly challenging. Factors such as unclear anatomical boundaries, inter-class similarities, and irrational annotations contribute to this challenge. Achieving both accurate and diverse segmentation templates is essential to support radiologists in clinical practice. In recent years, denoising diffusion probabilistic modeling (DDPM) has emerged as a prominent research topic in computer vision. It has demonstrated effectiveness in various vision tasks, including image deblurring, super-resolution, anomaly detection, and even semantic representation generation at the pixel level. Despite the robustness of existing diffusion models in visual generation tasks, they still struggle with discrete masks and their various effects. To address the need for accurate and diverse spine medical image segmentation templates, we propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM). Our approach integrates the diffusion model into a standard U-shaped architecture. At each step, we combine the noise-added image with the labeled mask to guide the diffusion direction accurately towards the target region. Furthermore, to capture specific anatomical a priori information in medical images, we incorporate a shape a priori module. This module efficiently extracts structural semantic information from the input spine images. We evaluate our method on a single dataset of spine images acquired through X-ray imaging. Our results demonstrate that VerseDiff-UNet significantly outperforms other state-of-the-art methods in terms of accuracy while preserving the natural features and variations of anatomy.
READ FULL TEXT