L^3U-net: Low-Latency Lightweight U-net Based Image Segmentation Model for Parallel CNN Processors

03/30/2022
by   Osman Erman Okman, et al.
0

In this research, we propose a tiny image segmentation model, L^3U-net, that works on low-resource edge devices in real-time. We introduce a data folding technique that reduces inference latency by leveraging the parallel convolutional layer processing capability of the CNN accelerators. We also deploy the proposed model to such a device, MAX78000, and the results show that L^3U-net achieves more than 90 datasets with 10 fps.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro