Learning Boltzmann Machine with EM-like Method

09/07/2016
by   Jinmeng Song, et al.
0

We propose an expectation-maximization-like(EMlike) method to train Boltzmann machine with unconstrained connectivity. It adopts Monte Carlo approximation in the E-step, and replaces the intractable likelihood objective with efficiently computed objectives or directly approximates the gradient of likelihood objective in the M-step. The EM-like method is a modification of alternating minimization. We prove that EM-like method will be the exactly same with contrastive divergence in restricted Boltzmann machine if the M-step of this method adopts special approximation. We also propose a new measure to assess the performance of Boltzmann machine as generative models of data, and its computational complexity is O(Rmn). Finally, we demonstrate the performance of EM-like method using numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro