Learning differential equations from data
Differential equations are used to model problems that originate in disciplines such as physics, biology, chemistry, and engineering. In recent times, due to the abundance of data, there is an active search for data-driven methods to learn Differential equation models from data. However, many numerical methods often fall short. Advancements in neural networks and deep learning, have motivated a shift towards data-driven deep learning methods of learning differential equations from data. In this work, we propose a forward-Euler based neural network model and test its performance by learning ODEs such as the FitzHugh-Nagumo equations from data using different number of hidden layers and different neural network width.
READ FULL TEXT