Local Sparse Approximation for Image Restoration with Adaptive Block Size Selection

12/20/2016
by   Sujit Kumar Sahoo, et al.
0

In this paper the problem of image restoration (denoising and inpainting) is approached using sparse approximation of local image blocks. The local image blocks are extracted by sliding square windows over the image. An adaptive block size selection procedure for local sparse approximation is proposed, which affects the global recovery of underlying image. Ideally the adaptive local block selection yields the minimum mean square error (MMSE) in recovered image. This framework gives us a clustered image based on the selected block size, then each cluster is restored separately using sparse approximation. The results obtained using the proposed framework are very much comparable with the recently proposed image restoration techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro