Long-term IaaS Selection using Performance Discovery

We propose a novel framework to select IaaS providers according to a consumer's long-term performance requirements. The proposed framework leverages free short-term trials to discover the unknown QoS performance of IaaS providers. We design a temporal skyline-based filtering method to select candidate IaaS providers for the short-term trials. A novel cooperative long-term QoS prediction approach is developed that utilizes past trial experiences of similar consumers using a workload replay technique. We propose a new trial workload generation model that estimates a provider's long-term performance in the absence of past trial experiences. The confidence of the prediction is measured based on the trial experience of the consumer. A set of experiments are conducted based on real-world datasets to evaluate the proposed framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro