MaxGap Bandit: Adaptive Algorithms for Approximate Ranking

06/03/2019
by   Sumeet Katariya, et al.
0

This paper studies the problem of adaptively sampling from K distributions (arms) in order to identify the largest gap between any two adjacent means. We call this the MaxGap-bandit problem. This problem arises naturally in approximate ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The key novelty of the MaxGap-bandit problem is that it aims to adaptively determine the natural partitioning of the distributions into a subset with larger means and a subset with smaller means, where the split is determined by the largest gap rather than a pre-specified rank or threshold. Estimating an arm's gap requires sampling its neighboring arms in addition to itself, and this dependence results in a novel hardness parameter that characterizes the sample complexity of the problem. We propose elimination and UCB-style algorithms and show that they are minimax optimal. Our experiments show that the UCB-style algorithms require 6-8x fewer samples than non-adaptive sampling to achieve the same error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro