Meta-learning framework with applications to zero-shot time-series forecasting

02/07/2020
by   Boris N. Oreshkin, et al.
63

Can meta-learning discover generic ways of processing time-series (TS) from a diverse dataset so as to greatly improve generalization on new TS coming from different datasets? This work provides positive evidence to demonstrate this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms as specific cases. We further identify via theoretical analysis the meta-learning adaptation mechanisms within N-BEATS, a recent neural TS forecasting model. Our meta-learning theory predicts that N-BEATS iteratively generates a subset of its task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. Our empirical results emphasize the importance of meta-learning for successful zero-shot forecasting to new sources of TS, supporting the claim that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro