Mining Privacy-Preserving Association Rules based on Parallel Processing in Cloud Computing

04/21/2023
by   Dhinakaran D, et al.
0

With the onset of the Information Era and the rapid growth of information technology, ample space for processing and extracting data has opened up. However, privacy concerns may stifle expansion throughout this area. The challenge of reliable mining techniques when transactions disperse across sources is addressed in this study. This work looks at the prospect of creating a new set of three algorithms that can obtain maximum privacy, data utility, and time savings while doing so. This paper proposes a unique double encryption and Transaction Splitter approach to alter the database to optimize the data utility and confidentiality tradeoff in the preparation phase. This paper presents a customized apriori approach for the mining process, which does not examine the entire database to estimate the support for each attribute. Existing distributed data solutions have a high encryption complexity and an insufficient specification of many participants' properties. Proposed solutions provide increased privacy protection against a variety of attack models. Furthermore, in terms of communication cycles and processing complexity, it is much simpler and quicker. Proposed work tests on top of a realworld transaction database demonstrate that the aim of the proposed method is realistic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset