Mixed reality hologram slicer (mxdR-HS): a marker-less tangible user interface for interactive holographic volume visualization

01/26/2022
by   Hoijoon Jung, et al.
0

Mixed reality head-mounted displays (mxdR-HMD) have the potential to visualize volumetric medical imaging data in holograms to provide a true sense of volumetric depth. An effective user interface, however, has yet to be thoroughly studied. Tangible user interfaces (TUIs) enable a tactile interaction with a hologram through an object. The object has physical properties indicating how it might be used with multiple degrees-of-freedom. We propose a TUI using a planar object (PO) for the holographic medical volume visualization and exploration. We refer to it as mxdR hologram slicer (mxdR-HS). Users can slice the hologram to examine particular regions of interest (ROIs) and intermix complementary data and annotations. The mxdR-HS introduces a novel real-time ad-hoc marker-less PO tracking method that works with any PO where corners are visible. The aim of mxdR-HS is to maintain minimum computational latency while preserving practical tracking accuracy to enable seamless TUI integration in the commercial mxdR-HMD, which has limited computational resources. We implemented the mxdR-HS on a commercial Microsoft HoloLens with a built-in depth camera. Our experimental results showed our mxdR-HS had a superior computational latency but marginally lower tracking accuracy than two marker-based tracking methods and resulted in enhanced computational latency and tracking accuracy than 10 marker-less tracking methods. Our mxdR-HS, in a medical environment, can be suggested as a visual guide to display complex volumetric medical imaging data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro