MovieMat: Context-aware Movie Recommendation with Matrix Factorization by Matrix Fitting

04/27/2022
by   Hao Wang, et al.
0

Movie Recommender System is widely applied in commercial environments such as NetFlix and Tubi. Classic recommender models utilize technologies such as collaborative filtering, learning to rank, matrix factorization and deep learning models to achieve lower marketing expenses and higher revenues. However, audience of movies have different ratings of the same movie in different contexts. Important movie watching contexts include audience mood, location, weather, etc. Tobe able to take advantage of contextual information is of great benefit to recommender builders. However, popular techniques such as tensor factorization consumes an impractical amount of storage, which greatly reduces its feasibility in real world environment. In this paper, we take advantage of the MatMat framework, which factorizes matrices by matrix fitting to build a context-aware movie recommender system that is superior to classic matrix factorization and comparable in the fairness metric.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset