(Nearly) Sample-Optimal Sparse Fourier Transform in Any Dimension; RIPless and Filterless

09/24/2019
by   Vasileios Nakos, et al.
0

In this paper, we consider the extensively studied problem of computing a k-sparse approximation to the d-dimensional Fourier transform of a length n signal. Our algorithm uses O(k log k log n) samples, is dimension-free, operates for any universe size, and achieves the strongest ℓ_∞/ℓ_2 guarantee, while running in a time comparable to the Fast Fourier Transform. In contrast to previous algorithms which proceed either via the Restricted Isometry Property or via filter functions, our approach offers a fresh perspective to the sparse Fourier Transform problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro