Neural Graph Machines: Learning Neural Networks Using Graphs

03/14/2017
by   Thang D. Bui, et al.
0

Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely "Neural Graph Machines", that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a) allowing the network to train using labeled data as in the supervised setting, (b) biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro