Neural Tensor Factorization
Neural collaborative filtering (NCF) and recurrent recommender systems (RRN) have been successful in modeling user-item relational data. However, they are also limited in their assumption of static or sequential modeling of relational data as they do not account for evolving users' preference over time as well as changes in the underlying factors that drive the change in user-item relationship over time. We address these limitations by proposing a Neural Tensor Factorization (NTF) model for predictive tasks on dynamic relational data. The NTF model generalizes conventional tensor factorization from two perspectives: First, it leverages the long short-term memory architecture to characterize the multi-dimensional temporal interactions on relational data. Second, it incorporates the multi-layer perceptron structure for learning the non-linearities between different latent factors. Our extensive experiments demonstrate the significant improvement in rating prediction and link prediction on dynamic relational data by our NTF model over both neural network based factorization models and other traditional methods.
READ FULL TEXT