New Audio Representations Image Gan Generation from BriVL

03/08/2023
by   Sen Fang, et al.
0

Recently, researchers have gradually realized that in some cases, the self-supervised pre-training on large-scale Internet data is better than that of high-quality/manually labeled data sets, and multimodal/large models are better than single or bimodal/small models. In this paper, we propose a robust audio representation learning method WavBriVL based on Bridging-Vision-and-Language (BriVL). WavBriVL projects audio, image and text into a shared embedded space, so that multi-modal applications can be realized. We demonstrate the qualitative evaluation of the image generated from WavBriVL as a shared embedded space, with the main purposes of this paper: (1) Learning the correlation between audio and image; (2) Explore a new way of image generation, that is, use audio to generate pictures. Experimental results show that this method can effectively generate appropriate images from audio.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset