New Optimization Approach Using Clustering-Based Parallel Genetic Algorithm

07/22/2013
by   Masoumeh Vali, et al.
0

In many global Optimization Problems, it is required to evaluate a global point (min or max) in large space that calculation effort is very high. In this paper is presented new approach for optimization problem with subdivision labeling method (SLM) but in this method for higher dimensional has high calculation effort. Clustering-Based Parallel Genetic Algorithm (CBPGA) in optimization problems is one of the solutions of this problem. That the initial population is crossing points and subdividing in each step is according to mutation. After labeling all of crossing points, selecting is according to polytope that has complete label. In this method we propose an algorithm, based on parallelization scheme using master-slave. SLM algorithm is implemented by CBPGA and compared the experimental results. The numerical examples and numerical results show that SLMCBPGA is improved speed up and efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro