Observational Learning with Fake Agents

05/12/2020
by   Pawan Poojary, et al.
0

It is common in online markets for agents to learn from other's actions. Such observational learning can lead to herding or information cascades in which agents eventually "follow the crowd". Models for such cascades have been well studied for Bayes-rational agents that choose pay-off optimal actions. In this paper, we additionally consider the presence of fake agents that seek to influence other agents into taking one particular action. To that end, these agents take a fixed action in order to influence the subsequent agents towards their preferred action. We characterize how the fraction of such fake agents impacts behavior of the remaining agents and show that in certain scenarios, an increase in the fraction of fake agents in fact reduces the chances of their preferred outcome.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset