OCCAM: An Optimization-Based Approach to Network Inference

06/09/2018
by   Anirudh Sabnis, et al.
0

We study the problem of inferring the structure of a communication network based only on network measurements made from a set of hosts situated at the network periphery. Our novel approach called "OCCAM" is based on the principle of occam's razor and finds the "simplest" network that explains the observed network measurements. OCCAM infers the internal topology of a communication network, including the internal nodes and links of the network that are not amenable to direct measurement. In addition to network topology, OCCAM infers the routing paths that packets take between the hosts. OCCAM uses path metrics measurable from the hosts and expresses the observed measurements as constraints of a mixed-integer bilinear optimization problem that can then be feasibly solved to yield the network topology and the routing paths. We empirically validate OCCAM on a wide variety of real-world ISP networks and show that its inferences agree closely with the ground truth. Specifically, OCCAM infers the topology with an average network similarity score of 93 infers routing paths with a path edit distance of 0.20. Further, OCCAM is robust to error in its measured path metric inputs, producing high quality inferences even when 20-30 significant advance in network tomography as it proposes and empirically evaluates the first method that infers the complete network topology, rather than just logical routing trees from sources.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset