On the Efficacy of Small Self-Supervised Contrastive Models without Distillation Signals

07/30/2021
by   Haizhou Shi, et al.
0

It is a consensus that small models perform quite poorly under the paradigm of self-supervised contrastive learning. Existing methods usually adopt a large off-the-shelf model to transfer knowledge to the small one via knowledge distillation. Despite their effectiveness, distillation-based methods may not be suitable for some resource-restricted scenarios due to the huge computational expenses of deploying a large model. In this paper, we study the issue of training self-supervised small models without distillation signals. We first evaluate the representation spaces of the small models and make two non-negligible observations: (i) small models can complete the pretext task without overfitting despite its limited capacity; (ii) small models universally suffer the problem of over-clustering. Then we verify multiple assumptions that are considered to alleviate the over-clustering phenomenon. Finally, we combine the validated techniques and improve the baseline of five small architectures with considerable margins, which indicates that training small self-supervised contrastive models is feasible even without distillation signals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro