Optimal and instance-dependent guarantees for Markovian linear stochastic approximation

12/23/2021
by   Wenlong Mou, et al.
0

We study stochastic approximation procedures for approximately solving a d-dimensional linear fixed point equation based on observing a trajectory of length n from an ergodic Markov chain. We first exhibit a non-asymptotic bound of the order t_mixdn on the squared error of the last iterate of a standard scheme, where t_mix is a mixing time. We then prove a non-asymptotic instance-dependent bound on a suitably averaged sequence of iterates, with a leading term that matches the local asymptotic minimax limit, including sharp dependence on the parameters (d, t_mix) in the higher order terms. We complement these upper bounds with a non-asymptotic minimax lower bound that establishes the instance-optimality of the averaged SA estimator. We derive corollaries of these results for policy evaluation with Markov noise – covering the TD(λ) family of algorithms for all λ∈ [0, 1) – and linear autoregressive models. Our instance-dependent characterizations open the door to the design of fine-grained model selection procedures for hyperparameter tuning (e.g., choosing the value of λ when running the TD(λ) algorithm).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro