Optimal Fusion of Elliptic Extended Target Estimates based on the Wasserstein Distance

04/01/2019
by   Kolja Thormann, et al.
0

This paper considers the fusion of multiple estimates of a spatially extended object, where the object extent is modeled as an ellipse that is parameterized by the orientation and semi-axes lengths. For this purpose, we propose a novel systematic approach that employs a distance measure for ellipses, i.e., the Gaussian Wasserstein distance, as a cost function. We derive an explicit expression for the Minimium Mean Gaussian Wasserstein distance (MMGW) estimate. Based on the concept of a MMGW estimator, we develop efficient methods for the fusion of extended target estimates. The proposed fusion methods are evaluated in a simulated experiment and the benefits of the novel methods are discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro