Parseval Proximal Neural Networks

12/19/2019
by   Marzieh Hasannasab, et al.
0

The aim of this paper is twofold. First, we show that a certain concatenation of a proximity operator with an affine operator is again a proximity operator on a suitable Hilbert space. Second, we use our findings to establish so-called proximal neural networks (PNNs) and stable Parseval (frame) proximal neural networks (PPNNs). Let H and K be real Hilbert spaces, b ∈K and T ∈B (H,K) a linear operator with closed range and Moore-Penrose inverse T^†. Based on the well-known characterization of proximity operators by Moreau, we prove that for any proximity operator ProxK→K the operator T^† Prox ( T · + b) is a proximity operator on H equipped with a suitable norm. In particular, it follows for the frequently applied soft shrinkage operator Prox = S_λℓ_2 →ℓ_2 and any frame analysis operator TH→ℓ_2, that the frame shrinkage operator T^† S_λ T is a proximity operator in a suitable Hilbert space. Further, the concatenation of proximity operators on R^d equipped with different norms establishes a PNN. If the network arises from Parseval frame analysis or synthesis operators, it forms an averaged operator, called PPNN. The involved linear operators, respectively their transposed operators, are in a Stiefel manifold, so that minimization methods on Stiefel manifolds can be applied for training such networks. Finally, some proof-of-the concept examples demonstrate the performance of PPNNs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro