Perturbed Model Validation: A New Framework to Validate Model Relevance

05/24/2019
by   Jie M. Zhang, et al.
3

This paper introduces PMV (Perturbed Model Validation), a new technique to validate model relevance and detect overfitting or underfitting. PMV operates by injecting noise to the training data, re-training the model against the perturbed data, then using the training accuracy decrease rate to assess model relevance. A larger decrease rate indicates better concept-hypothesis fit. We realise PMV by using label flipping to inject noise, and evaluate it on four real-world datasets (breast cancer, adult, connect-4, and MNIST) and three synthetic datasets in the binary classification setting. The results reveal that PMV selects models more precisely and in a more stable way than cross-validation, and effectively detects both overfitting and underfitting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro