Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active Learning

10/27/2022
by   Kevin Miller, et al.
0

We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-based active learning, as long as the measure of uncertainty properly aligns with the underlying model and the model properly reflects uncertainty in unexplored regions. In particular, we use a recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier and we introduce an acquisition function designed to measure uncertainty in this graph-based classifier that identifies unexplored regions of the data. We introduce a diagonal perturbation in PWLL which produces exponential localization of solutions, and controls the exploration versus exploitation tradeoff in active learning. We use the well-posed continuum limit of PWLL to rigorously analyze our method, and present experimental results on a number of graph-based image classification problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro