Probabilistic Modelling of Signal Mixtures with Differentiable Dictionaries
We introduce a novel way to incorporate prior information into (semi-) supervised non-negative matrix factorization, which we call differentiable dictionary search. It enables general, highly flexible and principled modelling of mixtures where non-linear sources are linearly mixed. We study its behavior on an audio decomposition task, and conduct an extensive, highly controlled study of its modelling capabilities.
READ FULL TEXT