Public Parking Spot Detection And Geo-localization Using Transfer Learning

09/01/2022
by   Moseli Mots'oehli, et al.
0

In cities around the world, locating public parking lots with vacant parking spots is a major problem, costing commuters time and adding to traffic congestion. This work illustrates how a dataset of Geo-tagged images from a mobile phone camera, can be used in navigating to the most convenient public parking lot in Johannesburg with an available parking space, detected by a neural network powered-public camera. The images are used to fine-tune a Detectron2 model pre-trained on the ImageNet dataset to demonstrate detection and segmentation of vacant parking spots, we then add the parking lot's corresponding longitude and latitude coordinates to recommend the most convenient parking lot to the driver based on the Haversine distance and number of available parking spots. Using the VGG Image Annotation (VIA) we use 76 images from an expanding dataset of images, and annotate these with polygon outlines of the four different types of objects of interest: cars, open parking spots, people, and car number plates. We use the segmentation model to ensure number plates can be occluded in production for car registration anonymity purposes. We get an 89 parking spaces respectively. This work has the potential to help reduce the amount of time commuters spend searching for free public parking, hence easing traffic congestion in and around shopping complexes and other public places, and maximize people's utility with respect to driving on public roads.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset